Review

Knowledge discovery in metabolomics: An overview of MS data handling

While metabolomics attempts to comprehensively analyse the small molecules characterising a biological system, MS has been promoted as the gold standard to study the wide chemical diversity and range of concentrations of the metabolome. On the other hand, extracting the relevant information from the overwhelming amount of data generated by modern analytical platforms has become an important issue for knowledge discovery in this research field. The appropriate treatment of such data is therefore of crucial importance in order, for the data, to provide valuable information. The aim of this review is to provide a broad overview of the methodologies developed to handle and process MS metabolomic data, compare the samples and highlight the relevant metabolites, starting from the raw data to the biomarker discovery. As data handling can be further separated into data processing, data pre-treatment and data analysis, recent advances in each of these steps are detailed separately.

Keywords: Data mining / Data processing / Metabolomics / MS
DOI 10.1002/jssc.200900609

1 Metabolomics
1.1 Systems biology

Metabolomics (also known as metabonomics) is a recent discipline that attempts to globally study metabolites and their concentrations, interactions and dynamics within complex samples [1]. It constitutes one of the tools of the post-genomic era [2], which is concerned with the study of the different functional levels of a biological system, i.e. the transcriptome, the proteome and the metabolome [3, 4]. As metabolites can be considered the downstream products of cellular regulatory processes [5], metabolomics data can precisely characterise cells, tissues, biofluids or whole organisms by defining specific biochemical phenotypes that are representative of physiological or developmental states. The metabolome is the holistic quantitative set of low-molecular-weight compounds (<1000 Da), including many hundreds or thousands of molecules such as carbohydrates, vitamins, lipids and amino or fatty acids. These metabolites participate in the metabolic reactions necessary for normal functions, the maintenance or growth of a cell [2]. Their origin can be either endogenous such as the products of biosynthesis and catabolism or exogenous such as nutrients or pharmaceutical compounds degradation products [6, 7].

The chemical properties of the organic or inorganic constituents of this set are greatly variable and this diversity is a critical aspect to consider [8]. The variability in the molecular weight, polarity or solubility and the wide dynamic range of concentrations (from pmol to mmol) constitute additional difficulties when analysing metabolites while no amplification process is available.

1.2 Applications of metabolomics

Measuring metabolites changes could offer deeper insights into biological mechanisms by describing the responses of systems to environmental or genetic modifications. Metabolomic analyses constitute a potent tool for the discovery of biomarkers related to a physiological response and the diagnosis of complex phenotypes. Numerous applications have already been developed in a variety of research fields of the post-genomic era, from medical science to agriculture.

Although early metabolic studies focused on pre-selected specific compounds, modern untargeted approaches represent efficient tools for the early detection of diseases [9–11]. The screening of drug candidates constitutes another prominent application through the assessment of the effects of metabolic modifications or toxicity [12, 13]. In addition, metabolomics has recently received an increasing interest from the nutrition research field [14]. Several applications
are foreseen, such as food composition analyses, quality and authenticity assessments and the monitoring of the physiological consequences of specific diets. Additionally, metabolomics is expected to greatly benefit agriculture, plant biochemistry, phytomedicine and natural product approaches [4, 15]. Metabolome analysis represents a key tool to uncover the roles of genes in functional genomics [16]. Genotyping and phenotyping will certainly provide precious information to link the sequence of a gene to its function.

2 Analytical methods

2.1 General considerations

Due to the high chemical diversity of the metabolome, complementary analytical techniques are required to monitor it completely [17]. Moreover, sensitivity constitutes a major concern, because there is no available method of amplification as in the case of transcriptome analysis. Multiple analytical platforms have already been applied to metabolomic studies [18], such as direct infusion MS (DIMS), hyphenated separation technique MS platforms, i.e. GC [19–23], LC [24–26] or CE [27–30], as well as NMR [1, 31, 32], Fourier transform-infrared spectroscopy [33] or accelerator MS [34]. The selection of the most appropriate methodology can be considered as a compromise between the chemical selectivity, sensitivity and speed of the different techniques [35].

2.2 MS

MS is a well-established detection method employed in many fields and is one of the essential instruments in analytical laboratories. By measuring the \(m/z \) of elemental or molecular species, it allows the simultaneous detection of multiple analytes with high sensitivities. MS has been demonstrated as a potent platform for metabolomics, thanks to its ability to detect metabolites present at low levels (µM concentrations) [36, 37]. Atmospheric pressure ionisation includes common soft ionisation techniques that generally produce protonated molecules \([M+H]^+\) or deprotonated molecules \([M−H]^−\). For metabolomic purposes and due to the fact that some metabolites can be observed exclusively in only one ionisation mode, acquisition should be performed in both positive and negative ion mode to maximise the metabolome coverage (Fig. 1). The high mass accuracy of MS provides structural information, as an exact molecular mass can be indicative of the molecular formula or fragments of the molecular structure [18]. The vast majority of recent metabolomic studies have relied on this particular technique [38].

2.3 Direct injection MS

DIMS is the most simple and direct approach to MS technology. It provides high-throughput screening and is mainly used for sample classification. Its use is rather limited in terms of quantification and metabolite identification due to signal suppression. In fact, the simultaneous measurements of a large number of compounds may suffer from matrix effects, such as ion suppression, especially when DIMS analyses are performed on complex samples [39]. A high mass accuracy is desirable and fragmentation through tandem MS is usually employed as it provides more information for the identification of metabolites through the detection of both the parent molecules and the fragments.
2.4 Chromatography-MS

The hyphenation of MS with separative techniques such as chromatography greatly increases the quality of the raw data generated [18, 40]. The sequential introduction of compounds into the mass spectrometer enables a higher sensitivity and allows more metabolites to be detected but it also involves an increase in the analysis time. Two main separative methods are currently extensively used in metabolomics, namely GC and LC.

2.4.1 GC-MS

GC-MS is well established and already employed [41–43]. The typical ionisation techniques are chemical ionisation, which minimises fragmentation, and fragmentation through electron impact [23]. GC-MS provides reproducible and accurate measurements of volatile compounds and the fragmentation pattern of these molecules [19, 21]. The chemical derivatisation of semi-volatile compounds is required to increase the volatility and produces ions that can be separated in the GC column [44–46]. GC-MS was historically the method-of-choice for the early development of metabolomic studies [47, 48], and libraries have been built to facilitate the identification of compounds [49]. Recent developments include comprehensive GC × GC-MS, which separated compounds with two columns of orthogonal properties (Fig. 2) [50].

2.4.2 LC-MS

LC is able to handle a broader range of molecular weights and has become increasingly popular for the analysis of biological samples due to its high sensitivity [51, 52]. Another advantage of LC over GC resides in the large diversity of separation mechanisms including normal phase (silica), reverse phase (C18, C8, C4, phenyl), hydrophilic interaction chromatography and ion exchange chromatography. The phase chemistry greatly influences the nature of metabolites that can be investigated, and the assessment of complete metabolomes is currently impossible using a single chromatographic system [25, 53, 54]. The recent introduction of capillary LC [55, 56] and ultra-high pressure LC [57] offers great potential for metabolic analyses on complex samples by highly improving the chromatographic performance. Columns packed with sub-2-μm particles can lead either to the better separation of narrower chromatographic peaks or to a faster analysis without the loss of resolution, compared with conventional LC. The use of elevated temperatures is another recent area of investigation to improve the resolution of LC [58–60], whereas monolithic columns constitute another alternative to improve the chromatographic performance [53, 61, 62]. The typical 2-D structure of LC-MS data is shown in Fig. 3.

3 Metabolomic data handling

3.1 Data handling

Metabolomic experiments usually produce large amounts of data. Handling and analysing such complex data sets has a great impact on the quality of the identification and quantification of putative low-mass regulators, and therefore to the resulting biological interpretation [63]. Data handling can be further separated into data processing, data pre-treatment and data analysis [64]. The distinct steps of the strategy applied for knowledge discovery are shown in Fig. 4.

The appropriate procedures for data handling should take the different sources of variation into account and should be cautiously undertaken as the choice of these procedures depends heavily on: (i) the analytical platform used to generate the data, (ii) the biological phenomenon under study, (iii) the downstream data analysis method and (iv) the inherent properties of the data (e.g., dimensionality) [65].
3.2 Data pre-processing

3.2.1 Data files

Raw data are recorded as a single file corresponding to a specific sample and hyphenated data files consist of a set of mass spectra recorded in sequence. The processing of such raw data therefore constitutes the initial step of data handling, and its main goal is to extract the relevant information and summarise the multiple files in a single table [66]. Such data summary requires the characterisation of each sample by the same number of variables, and every variable must correspond to the same metabolite measured in all of the samples in the data set. This methodology includes several data-processing steps, such as noise filtering, data binning, automatic peak detection and chromatographic alignment, to allow the appropriate comparison of multiple samples by statistical methods.

3.2.2 Centroid data

A common method of data acquisition is to centroid the data by combining the multiple m/z values corresponding to a given peak into a single data point characterised by one m/z value, the weighted centre of mass and its associated intensity. The intensity is provided by the normalised area of the peak calculated with the intensities of the associated data points. The main peak of an isotopic cluster can be identified and selected as a monoisotopic peak instead of as profile data. Centroiding allows a better mass assignment and usually increases the data quality [67].

3.2.3 Resolution and data binning

Raw hyphenated data are usually binned in intervals of fixed values to generate regularly sampled data. This step is crucial for resolution tuning and allows the proper representation and processing of the data. Ion intensities are summed for a given m/z and retention time interval [68]. The data are therefore converted into a 2-D array with one axis describing the retention times values and the other the m/z values. The values within the array are naturally the measured intensities for a given m/z at a given retention time. Despite a loss in m/z resolution, this data representation allows for easier data handling and treatment.
3.2.4 Filtering data

The filtering process is used to suppress or at least reduce random analytical noise or baseline drift in the data. Signal-processing techniques are usually used, such as moving-window filtering [69, 70], Savitzky–Golay filters [71] or wavelet transforms [72]. During the baseline correction, the shape of the baseline is identified and then subtracted from the data.

3.2.5 Peak detection

Several strategies are possible to distinguish real signals from noise, and the simplest one relies on an intensity threshold, with the selection of all peaks detected above a defined noise level. Either the peak area or the peak height can be used as a quantitative measure of the real concentration and can be further associated with the corresponding m/z and retention time information. This threshold can be applied independently in both the m/z and the retention time directions using all intensity values along one direction [71, 73]. Constraints on the peak shapes in the chromatographic direction can refine the detection; data points meeting this shape criterion are defined as peaks [74]. The second possibility is based on the examination of single ion chromatograms, defined by a given m/z resolution. The chromatograms are processed independently, either with a threshold level or with a Gaussian-filter to detect the apex and inflection points for the area integration [75, 76]. The third approach depends on the application of a model-fitting procedure to the data, which involves isotopes detection [77, 78]. The comparison of the peaks among different samples constitutes another approach for peak detection but it involves the proper alignment of the chromatograms. The true peaks are consequently defined by an intensity above a given threshold, and they must be present at least in a given proportion of the samples. The signal-processing procedure and the two main approaches for generating variables are shown in Fig. 5.

3.2.6 Deconvolution

When soft ionisation methods are employed, a single peak is expected for each compound. Fragments, adducts and molecule isotopes can complicate the peak-detection process, and an accurate detection procedure is needed. Curve resolution or deconvolution algorithms use both the spectral and the chromatographic profile resolution. Based on the correlation of the profiles among the samples and the retention time coincidence, deconvolution algorithms such as the component detection algorithm [79, 80] attempt to regroup ions coming from the same metabolite. In addition, these ions are supposed to have related biological variations. The use of these methods is however problematic when applied to complex biological analyses such as metabolomic data because numerous highly correlated signals can be observed at similar retention times, leading to overlapping peaks with close biological variations.

3.2.7 Alignment

There must be a one-to-one correspondence between the variables being compared in order to accurately ascertain the differences in the chemical composition between samples from their chromatograms. Thus, one mandatory requirement is the proper alignment in both the m/z and the

Figure 5. The first steps of data handling involving signal processing and feature detection with the two principal strategies for generating variables.
retention time dimensions in order to combine results. Shifts along the \(m/z\) axis are usually easily corrected using calibration, but changes in retention times are more problematic. Progress in chromatographic techniques has reduced these shifts but variability in the retention time of a given metabolite is frequently encountered [81]. These drifts can be caused by multiple factors, including temperature changes, pH, pump pressure fluctuations or column clogging. An alignment algorithm usually requires a reference chromatogram to correct these retention time differences, and its choice has a great influence on the results. Additionally, numerous issues need to be tackled when performing such corrections. For instance, the method must preserve the chemical selectivity between samples of distinct compositions while minimising run-to-run shifts [82]. Moreover, corresponding peaks are expected to be shifted by less than the representative distance between adjacent peaks. On the other hand, an alignment algorithm must be fast enough to deal quickly with a large amount of data to supply a high sample throughput. Three approaches are commonly utilised to align chromatograms [83]. The simplest solution resides in summing or binning data along the chromatographic dimension. No loss of information is required and the errors are pushed back towards the bin boundaries. Indeed peaks can be occasionally allocated to neighbouring \(m/z\) bins alternatively [75]. Secondly, an alignment without peak detection can be performed by compressing or stretching the retention time axis of all samples to a common reference. As it needs only a minimal manual contribution, this approach is interesting from an automation point of view [84]. The mapping of total ion chromatograms is one of the most investigated alignment methods, and warping methods are well-known alternatives for that purpose, allowing the stretching and shrinking of segments of the chromatograms [85]. Numerous warping methods are available [86–88], but two algorithms were initially developed, namely correlation optimised warping [89] and dynamic time warping [90]. Unfortunately, such iterative alignment procedures are considerably time consuming when dealing with the large data sets of long chromatograms. Another way to match the corresponding peaks among samples relies on the detection of independent signals using curve resolution. Several algorithms are available such as progressive clustering [91], GENTLE [92] or MEND [93]. The correspondence between the detected peaks of different samples can then be assigned by the use of a time and \(m/z\) tolerance to regroup similar peaks. Another solution is to match components with high-spectral similarity in a given time window.

3.2.8 Normalisation

Prior to analysis, data are often pre-treated to remove systematic variations between samples [64]. Normalisation is a critical step, because it aims to remove bias in the data while preserving biological information. It is a difficult task mainly due to the great chemical diversity of complex data, leading to discrepancies in the extraction or ionisation efficiencies. Statistical models represent simple methods to estimate the scaling factors among samples, such as the unit norm [94] or median intensities [71]. The addition of a set of internal or external standards that reasonably cover the retention time range constitutes another way to perform normalisation in a practical manner [95–97].

3.2.9 Software packages

The need of powerful data-processing methods gave rise to numerous commercial or free tools, implementing either one specific part or combining several steps of the data-processing pipeline. Most of the tools include standard procedures of noise filtering, peak detection, alignment and normalisation, while they output a data matrix containing the peak intensities or areas for each detected ion among all the samples.

Integrated platforms for hyphenated MS data pre-processing and analysis include free packages such as MZmine [74], MAthDAMP [98], metAlign [99], MSFacts [100], XCMS [75] and MeltDB [101] or commercial solutions as, for example, MS Resolver [102], MarkerLynx [103] or Sieve based on the ChromAlign algorithm [104]. Moreover, comparisons of performance have been published recently [105, 106].

3.3 Metabolomic data pre-treatment

The data pre-treatment phase constitutes another crucial step that can drastically change the pertinence and the outcome of the data analysis. Centring aims to estimate the model parameters with an observed bias. Mean centring across the first mode is a classical pre-processing practice prior to model fitting. It provides simpler models by reducing the rank, increasing the fit to the data, removing offsets and avoiding algorithmic problems [107]. The fluctuations of the variables are centred around zero instead of their mean value to focus on the variation between samples. Scaling is used to adjust the importance allocated to the elements of the data in fitting the model. Most scaling methods adjust the weight of each variable with a scaling factor that can be estimated by either a dispersion criterion or a size measure. It may be obtained by calculating the inverse of its standard deviation so that all variables have the same chance to contribute to the model as they have an equal unit variance (UV). This technique is called UV scaling, or auto-scaling when prior mean centring is performed [108]. Further analyses are then based on correlations instead of covariances. UV scaling is often suitable when no prior information is available but equal weights are allocated to the baseline noise and proper signals. Pareto scaling involves a similar procedure based on the dispersion except that the square root of the standard
deviation is used as scaling factor [109]. It is an intermediate situation as it gives a variance equal to the standard deviation of each variable instead of UV. Large fold changes have less influence than when raw data are used, but the reasonable weight allocated to small values can avoid the detrimental effects caused by a similar error increase. Other methods such as variable stability scaling [110] or range scaling [111] are available, but UV and Pareto scaling are the prevailing methods applied in metabolomic MS-based studies.

Furthermore, as many statistical procedures are based on the assumption of normally distributed values, a transformation can be desirable to address skewed data. Log or power transformation are well-known functions generally applied to correct heteroscedasticity [112]. The log function is useful when the interactions between variables are not only additive but also multiplicative and its use allows the fit of linear models [113].

4 Data analysis

4.1 Modelling metabolomic data

Metabolomic experiments exploit computerised instruments leading to the simultaneous detection of a great number of variables, and the generation of large multivariate data sets [114]. From a statistical point of view, metabolomic data sets constitute a great challenge, as reliable and robust approaches are necessary to handle and extract the relevant information from the vast amount of data generated [115, 116]. The outputs of a metabolomic data analysis may differ greatly depending on the purposes of the investigation. Although very few highly reliable metabolites can be sufficient for diagnostic purposes (as in the case of disease evaluation), an extended set of compounds may be desired when a biochemical network is under examination. Alternatively, an overview of the distribution of samples can be desirable to assess a data set globally. The choice of the data analysis strategy depends heavily on the questions that are asked. Changes in metabolite levels may be drastic or subtle, and statistical processing is required to determine the relevance of an observed change. The choice of the most appropriate model for a given data set constitutes an important issue. The structural descriptions and the explicit knowledge that are obtained by examining the model are more important than the predictive ability of new samples in many applications. The description of the underlying concept has therefore to be both operational and intelligible. The methods are expected to constitute high-throughput and potent automated tools to highlight trends and patterns among samples or relevant biomarkers within large metabolomic data sets.

Metabolomic commercial solutions include built-in statistical packages for data analysis. Common chemometric tools [117, 118] such as principal component analysis (PCA) [119] are generally proposed for display and exploratory analysis purposes, whereas univariate statistical tests such as the Student’s t-test are used to identify the relevant variables. These methods are useful by providing an overview of the pre-processed data but are rather limited [120]. There is, therefore, a considerable opportunity to increase the understanding of biological phenomena through the use of data mining methods with respect to their strengths and applicability.

4.2 Univariate hypothesis testing

Univariate significance tests such as the Student’s t-test, the one-way analysis of variance or the non-parametric equivalents can be used to identify statistical differences between samples of distinct classes [121]. The predictive power of each variable is assessed by finding statistically significant differences between the mean intensity values of a given signal, and the calculated p-value is a straightforward indicator. Such procedures are easily understandable but their use is rather limited when dealing with thousands of highly correlated variables. False positives (type 1 error) are likely to occur when performing multiple comparisons and procedures such as the Bonferroni correction have been introduced to address this issue [122]. The vast majority of metabolomics-dedicated software provides statistical hypothesis testing [99, 123, 124].

4.3 Exploratory analysis by unsupervised learning

Unsupervised methods attempt to analyse a set of observations without measuring or observing any related outcome. As there is no specified class label or response, the data set is considered as a collection of analogous objects. Unsupervised learning uses procedures that attempt to find the natural partitions of patterns to facilitate the understanding of the relationship between the samples and to highlight the variables that are responsible for these relationships. By providing means for visualisation, unsupervised learning aids in the discovery of unknown but meaningful categories of samples or variables that naturally fall together. The success of such approaches is frequently evaluated subjectively by the interpretability and usefulness of the results with respect to a given problem.

4.3.1 PCA

PCA can be considered as the starting point of multivariate data analyses. PCA is an orthogonal transformation of multivariate data first formulated by Pearson [125] mostly used for exploratory analyses by extracting and displaying systematic variations. PCA attempts to uncover hidden internal structures by building principal components describing the maximal variance of the data [119]. This method represents a very useful tool for display purposes as it provides a low-dimension projection of the data, i.e. a
window into the original K-dimensional space, by a transformation into a new coordinate system. The basic concept relies on areas of signal variance in the data where underlying phenomena can be observed. This principle leads to a focus on a small number of uncorrelated independent signals that explain a large part of the total variance in a compact and insightful manner. In practice, PCA builds hyperplanes in the original feature space that are linear combinations of the original variables and describes the data in a least squares view. The inspection of PCA scores and loading plots highlights the relationships among the distribution of samples that may reveal groupings, trends or outliers and the corresponding variables. Moreover, more effective data analyses can be performed on the reduced dimensional space, such as clustering, pattern recognition or classification. The vast majority of metabolomic studies involve PCA as a first exploratory step [102, 126–131].

4.3.2 Hierarchical cluster analysis

When there is no class or response to be predicted, cluster analysis can help to partition a data set into natural groups. It intends to group together observations that are similar to one another by producing a hierarchical structure dividing the instance space. These subsets may reveal underlying patterns in the whole data structure, highlighting inner mechanisms of a phenomenon. There is a wide variety of clustering methods, but hierarchical cluster analysis (HCA) constitutes a straightforward and general approach when the number of clusters is unknown a priori. It can either be agglomerative (bottom-up, i.e. iteratively grouping objects) or divisive (top-down, i.e. dividing a data set), but in practice, the agglomerative methods are of wider use. A key part of HCA is the calculation of similarity measures between observations, and between clusters once observations begin to be grouped into clusters. This similarity is estimated by both a set of distances and a linkage function. The distances are computed using a specific metric, such as Euclidean, correlation or Manhattan. The linkage function defines the criteria chosen to compute the distance between objects. In all cases, the pair of clusters with highest cluster-to-cluster similarity is iteratively fused into a single cluster. The outcome is represented graphically as a dendrogram, i.e. a tree where each leaf corresponds to an object and the branching depicts the hierarchy of clusters [132]. Several applications of HCA have been used for the clustering of metabolomic data [133, 134]. The learning principles of PCA and HCA are shown in Fig. 6.

4.4 Classification by supervised learning

Supervised learning considers each object with respect to an observed response and includes regression and classification problems depending on the output type under consideration, i.e. a numerical value in the first case and a class label in the second. Classification thus aims to produce general hypotheses based on a training set of examples that are described by several variables and identified by known labels corresponding to the class information. The task is to learn the mapping from the former to the latter and numerous techniques, based either on statistics or on artificial intelligence, have been developed for that purpose.

4.4.1 Partial least squares projection to latent structures

Projection to latent structures by means of partial least squares (PLS) [135, 136] is a well-established regression-based method [136]. This technique is particularly adapted to situations where fewer observations (i.e. number of different observed objects, N) than measured variables (e.g. m/z, detected features, \(K \)) are available. Its use has become very popular, thanks to its ability to deal with many correlated and noisy variables forming megavariate data structures (\(K \gg N \)) [137, 138]. PLS builds a low dimensional sub-space based on linear combinations of the original X-variables and makes use of the additional Y information by adjusting the model to capture the Y-related variation in X. A PLS-based classification therefore has the property that it builds data structures with an intrinsic prediction power, by maximising the covariance between the data and the class assignment. The decomposition relies on latent variables that are computed sequentially to provide a good correlation with the remaining unexplained fraction of Y. In the context of classification, PLS-DA is performed to sharpen the partition between groups of observations, such that a maximum separation among classes is obtained. The model
can then be analysed to understand which variables carry the class-separating information [139]. PLS-DA was demonstrated as a potent tool for the classification of metabolomic data [65]. Orthogonal PLS analysis [140] and O2-PLS [141] are recent extensions of the PLS method and several recent studies applied these techniques to metabolomic data [126].

4.4.2 Decision trees

Decision trees are logic-based classification algorithms that are able to sort the training examples by class, using feature values to build a tree based on a divide-and-conquer strategy. The root node constitutes the starting point, and the instances are classified sequentially down the tree according to the values of attributes tested at each node. Decision trees build models that are based on a hierarchy of test and are consequently usually straightforward to interpret. The assumption made in such a method is that at least one feature shows dissimilar values among different classes. Features can be ranked by their capacity to divide the remaining data subset at a given node. The best (i.e. the most informative) feature can then be selected, and the procedure is repeated recursively with each branch delimiting a partition of the data, producing sub-trees from the splits. Decision trees are intrinsically univariate methods, because each node corresponds to a single feature splitting the data set. The most popular univariate decision tree algorithm is C4.5 [142]. Multivariate alternatives have, however, been proposed, such as CART [143] or alternatives relying either on logical operators [144] or on constructive induction [145]. The random forest constitutes another approach to build such classifiers, as it is a collection of individual decision trees obtained by a bagging procedure (bootstrap aggregating). All of the trees are applied in parallel to build a consensus predicted class as the most frequent output produced by the independent trees [146].

4.4.3 Artificial neural networks

Artificial neural networks (ANN) are well-established methods that are able to build models by the use of levels of units, called neurons, linked together by a network of connections of adjustable weights in a hierarchical structure [147]. The neural networks are thus named due to the similarity they share with biological neurons, which receive an input that is a weighted sum of the outputs of other elements. The signal starts from the input units, propagates through the connections and determines activation values when the output units are reached. Connection weights are first set to random values and then adjusted to progress slowly in the direction of the correct output. The interpretability of ANNs remains a critical issue because their outputs are usually not easily comprehensible. The most popular ANN algorithms include the multilayer perceptron [148] and radial basis functions [149]. The learning principles of the PLS regression, the decision trees and the multilayer perceptron are shown in Fig. 7.

4.4.4 Probabilistic learning algorithms

Probabilistic algorithms rely on an explicit probability model by allocating a probability to each class during the training phase. The predicted class label then corresponds to the class with the greatest probability. Bayesian networks constitute well-known methods of statistical learning, and their most simple version is the Naïve Bayes classifier. Despite being very simple and assuming the almost always wrong principles of independence between variables, Naïve Bayes often performs well in the presence of complex problems, making it useful in practice [150].

4.4.5 Instance-based learning algorithms

Instance-based learning algorithms can be considered the simplest form of learning [151]. The nearest neighbour classification method is one of the most popular and straightforward approaches. Its k-Nearest Neighbour implementation relies on the regrouping of instances with similar properties in the high-dimensional space of the data and a majority vote. Rather than inferring classification rules, the learned concept is encapsulated in the training set without explicitly illustrating the data patterns. Despite multiple possibilities, most instance-based classifiers use Euclidean distances as a good compromise to balance large and small differences, while weighting schemes have been developed to balance the influence of either the set of attributes or the neighbouring instances [152]. Only a few applications of the k-Nearest Neighbour approach have been presented for the classification of metabolomic data [134].
4.4.6 Support vector machines

Support vector machines (SVMs) are recent and increasingly popular classification methods with a great ability for generalisation [153, 154]. These algorithms possess several interesting qualities as they are generally robust to noisy data or to the presence of outliers and they can be applied to non-linear classification problems by making use of a kernel function. They rely on the selection of a small number of critical boundary instances called support vectors. SVMs were originally developed by Vapnik [155] and they rely on a projection of the data in a higher-dimensional space, i.e., the feature space. This transformation is properly selected to provide a separation of the training set classes, and a linear separation in the feature space can represent a non-linear decision boundary in the original data space. Kernel functions are used to map new points in the feature space for classification, and hence their choice is critical. Commonly used kernel functions include the linear, polynomial and radial basis function kernels. A hyperplane separating two classes with a tolerance value expressed as a margin on both sides of this limit is then built in the feature space. The algorithm attempts to maximise the value of this geometrical margin separating the hyperplane and the instances on both sides. Data points positioned on this margin are called the support vectors, and the solution is computed as a linear combination of these points. If no solution can be found, as when the classes are not linearly separable, a soft margin can be used to introduce a tolerance and accept errors of classification. This dimensionality reduction is therefore often very useful when mining large metabolomic data sets, and the selection of a subset of representative features that retain the salient characteristics of the data is therefore a fundamental issue. Moreover, circumventing the inclusion of irrelevant attributes having negative effects provides a more compact and interpretable image of a phenomenon, together with reduced computing time requirements.

4.4.7 Algorithmic aspects

Although both supervised and unsupervised approaches are available, attribute selection procedures usually combine a search algorithm that generates the subsets of variables and an estimation method that detects the most appropriate combination of variables using some quality index. This indicator measures either the predictive or the clustering ability of the variables, depending on whether the selection is supervised or not. Moreover, the selection method can either take each variable individually or a group of features
into consideration. Due to its nature, individual feature evaluation is unable to detect feature interactions. Moreover, a totally uninformative variable can significantly enhance the predictive ability in the context of other variables.

Two main approaches are usually proposed, the filter and the wrapper methodologies [160]. The filter selection relies generally on a pre-processing evaluation system that is independent from the learning phase. A quality index can be measured for individual or groups of attributes, and although it can be derived from a classifier, it does not directly rely on the prediction accuracy. Among several methods, feature ranking represents a simple supervised approach to filter the most valuable variables. Several ranking criteria are available to find variables that discriminate between the observed classes, including the analysis of variance [161] and Recursive Elimination of Features [162, 163]. On the other hand, algorithms that build linear models provide rankings by comparing the coefficients of features, such as orthogonal signal correction [164]. Other methods use different indicators, such as the information gain [165] based on entropy, to quantify the information content of a variable. Such rankings imply, however, the determination of a suitable number of features to select. Methods that eliminate redundant variables by allocating a goodness measure to subsets of the attributes are able to take the inter-correlations into account [166]. The correlation issue can be addressed either by selecting only one of the correlated variables within a group, such as correlation-based feature selection, or by building new features starting from the original correlated variables (feature construction/ transformation).

On the other hand, wrapper selection relies on the predictive accuracy of a learning algorithm as a quality index of a features subset, e.g. SVM-based feature selection. As the assortment giving raise to the best performance is kept, the selection is an integrated part of the learning phase and the number of features can be automatically determined. The wrapper model is computationally very expensive when dealing with a large number of features and the selection is evidently oriented by the choice of the classifier used as a black box [167]. Finally, by combining complementary filter selection and learning algorithms relying on distinct learning principles, performance can be improved by the strengths of both methods.

4.6 Algorithms comparison

Selecting a particular classification algorithm from the wide variety of available methods constitutes a critical operation. Despite numerous measures of performance, such as sensitivity, specificity and the Kappa coefficient [168, 169], the performance of a classifier is most often based on its prediction accuracy, i.e. the percentage of correctly predicted examples over the total number of predictions. However, this single value is not sufficiently informative when dealing with a limited number of observations, as this estimate will be completely optimistic. Several schemes are available for the robust evaluation of this accuracy to avoid overfitting, but the most popular include the repeated cross-validation and the prediction of an independent test set. By evaluating the accuracies of multiple algorithms using cross-validation, each experiment provides an independent error estimate [170]. Moreover, distinct costs of misclassification errors can be defined to avoid a given type of error, e.g. false positives or negatives. These results are then used to determine whether the average accuracy value of a particular algorithm is significantly greater or lower than another by performing a Student’s t-test for statistical comparison [171]. The sub-sampling of the whole data set to generate subsets, however, is in contradiction with the independency statement required by hypothesis testing, and a test should not depend on the partitioning of the data set. Several heuristic solutions have been proposed to counteract this difficulty, such as the corrected resampled t-test [172]. Repeated random partitioning of ten folds is commonly used to evaluate the prediction accuracies by examining their replicability.

5 Concluding remarks

Deciphering complex biological systems and processes requires detailed descriptions of the systems under study as well as data mining techniques suitable to handle large amounts of information. As continued data accumulation is inevitable, finding automatically the valuable but hidden information in metabolomic data of high dimensionality is already a crucial issue. Data mining, therefore, has a central role to play by making sense of data and inferring the structures governing biological phenomena. Indeed, these methods will have more and more opportunities to prove their worth when dealing with massive data sets and may lead to fruitful results by helping to decode complex phenomena. However, the relevant answers will not come from computer programs but from the people working with the data and understanding its related characteristics and issues.

On the other hand, an increasing number of metabolomic studies rely on multiple analytical platforms combining GC-, LC-, CE-MS or NMR data. Merging the information from data of different natures and structures and extracting the common traits will undoubtedly constitute a key issue in the perspective of a more comprehensive vision of metabolomics. In addition, the merging with data from other Omic technologies, such as transcriptomics and proteomics will probably offer a deeper insight into the regulatory networks in systems biology and will definitely represent another great challenge. Modelling all types of regulatory events occurring within a cell in a holistic manner is expected to provide a global view of the system.

The authors have declared no conflict of interest.
6 References

